Rationale & Background

- SQZ-eAPC-HPV is engaged through peripheral lymphoid cell transcripts (PBLMs) by using cell Surface technology to characterize circulating T cells and to assess the impact on tumor-reactive T cells. In addition, the use of technical methods such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (CyTOF) is valuable to understand the diversity and function of T cell subsets.

Experimental Design & Methods

- **COMBANDER-001 (NCT05357898):** This is a two-part study. Part 1 assesses SQZ-eAPC-HPV as a monotherapy with intravenous pembrolizumab for HPV16+ solid tumors (16 weeks QW or 24 weeks Q3W) (Figure 4). Enrolled patients received SQZ-PBMC-HPV as a monotherapy or pembrolizumab. Part 2b evaluates the combination with pembrolizumab for patients who had an innate response (ORR ≥ 50% or ≥ 10% change in RECIST v1.1) (Figure 5).

Patient Data (continued)

Safety & Toxicity Assessment Summary

| A. PBMCs are collected from the patient and loaded with HPV16 and 18 peptides. B. Processing time is reduced with live cell lines and activated T cells are assayed for specific responses. C. By using high-throughput ELISpot and ELISA, we can determine antigen-specific T cell responses and measure cytokine production.

Leukapheresis & Manufacturing Data

- **Cohort 1:** Enrolled patients received 0.5 x 10^6 SQZ-eAPC-HPV cells/kg Q3W for up to 1 year or until available doses are exhausted. Adverse events were assessed by CTC v5.0. Tumor response was assessed by RECIST v1.1. Efficacy results were consistent with the primary end point of tumor response.

Efficacy and Preliminary Pharmacodynamic Data

- **Conclusion:** SQZ-eAPC-HPV is a promising therapeutic cancer vaccine with the potential to improve patient outcomes. Further studies are needed to confirm these results and to investigate the potential for combination therapies.